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Abstract
In the classical Eden model (EM) the growing sites have the same probability of
becoming occupied and the growing process in (1 + 1) dimensions leads to the
formation of a self-affine aggregate with a growing exponent βEM = 1/3 and a
roughness exponent αEM = 1/2. A generalization of the EM is proposed and
studied, such that the growing probability now depends on the distance to the
interface. This new model is called the unstable Eden model (UEM) because,
within the short time regime, it exhibits an unstable growth mode with a growing
exponent βUEM > 1/2. However, in the asymptotic time regime the interface
becomes stabilized and a roughness exponent αUEM = 1 can be defined. In
contrast to the EM, the interface of the UEM is no longer self-affine. Based
on extensive numerical simulations it is concluded that the interface generated
by the collision between the EM and the UEM is characterized by a roughness
exponent αcoll = αUEM = 1.

PACS numbers: 68.35.Ct, 02.60.Cb, 05.45.Df

1. Introduction

The study and understanding of the properties of growing interfaces has recently developed
into a very active field of multidisciplinary research [1–6]. This interest is due to the fact that
evolving interfaces are present in a wide variety of physical, chemical and biological systems
and processes such as film growth by either molecular beam epitaxy, vapour deposition or
chemical deposition [1,2], propagation of fire fronts [7], bacterial growth [8], solidification [9],
propagation of reaction fronts in catalyzed reactions [10, 11], electrodeposition/dissolution
experiments [12], ballistic deposition [13], sedimentation [14], etc.

While different growth morphologies, such as layer by layer growth [15], unstable
growth [6], etc, have been identified, the development of self-affine surfaces is, so far, the
most frequently encountered growth process [1–6]. In a self-affine growing aggregate the
orientation of the interface is maintained essentially parallel to the substrate, but it becomes
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rough. The amount of roughness increases with time and, on a large observation scale, it
evolves in a self-affine fashion [5]. In contrast, unstable growth is observed when the initially
selected orientation of the substrate can no longer be maintained [5].

The aim of this paper is to study the properties of the interface generated by the collision
of two interfaces of different roughnesses. We define that a collision event takes place when
the last occupied growing site of one interface has at least one occupied neighbour belonging to
the other interface. So, the set of growing sites having that characteristic defines the collision
interface [16].

Our study is motivated by various physical processes such as the collision of fire fronts
in burning experiments or upon forest-fire evolution, solidification of immiscible fluids,
interference of reaction fronts during the propagation of chemical waves, etc. In a previous
paper, Albano [16] investigated the interface generated by the collision of two Eden clusters.
In that case, the resulting interface has the same roughness exponent as the colliding interfaces
before the collision. That paper posed an interesting question on the roughness of the interface
generated by two colliding interfaces of different roughnesses. In fact, a priori, it is not clear
whether the characteristics of the new interface would be dominated by either the rougher or
the smoother surface. Eventually, an interface characterized by a new roughness exponent
could emerge.

It should be noted that our study on the collision of two interfaces is essentially different
from the work of Derrida and Dickman [17] since that work focused on the investigation of
the interface generated by a competitive growth process.

In addition to the primary scope of this paper, a variation of the Eden model (EM), called
the unstable Eden model (UEM), is proposed and studied. It turns out that the interface of
the UEM is no longer self-affine, as in the case of the EM. Furthermore, both models have
different roughness exponents and consequently they are appropriated for the investigation
of the properties of a collision interface generated by two growing systems of different
characteristics.

The paper is organized as follows: in section 2 a brief theoretical background of dynamic
scaling theory applied to self-affine interfaces is outlined. In section 3 the EM is described
while the UEM is presented. Section 4 is devoted to the study of UEM while in section 5 results
corresponding to the collision between the interfaces of both EM and UEM are presented and
discussed. Finally, our conclusions are stated in section 6.

2. Brief background on the dynamic scaling approach

The phenomenological scaling approach to the dynamic evolution of a self-affine interface was
developed earlier by Family and Vicsek [4, 18] and has become a useful tool to characterize
self-affine roughness. Considering a flat, (d−1)-dimensional, surface at time t = 0 and paying
attention to the growing process that occurs essentially parallel to the surface, it is possible to
assume, without loss of generality, that there exists a well defined growth direction and that the
surface can be described by a function h(x, t) which gives the height of the interface at time
t and position x. Of course, such a height is measured from the initial flat surface at t = 0.
If the interface could not be described by a single valued function of x, the function h(x, t)

gives the maximum height of the interface at x. Considering a section of the surface having
a typical size L (in each of the (d − 1) dimensions of the surface) the average height of the
surface at time t is defined as

〈h(t)〉 = 1

(Ld−1)

∑

x

h(x, t) (1)
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where the summation runs over all x. The interface width w(L, t) at time t may be defined by
the rms of the height fluctuations given by

w(L, t) = (〈h2(t)〉 − 〈h(t)〉2 )1/2
. (2)

The Family–Viscek scaling approach assumes that

w(L, t) = LαF(t/Lz) (3)

where F(x) ∝ xβ for x � 1 and F(x) → constant for x � 1, with z = α/β. Also α, β and
z are the roughness, growing and dynamic exponents, respectively.

The dynamic exponent z describes the evolution of the correlated region with time: initially
different parts of the surface are independent, but regions of correlated roughness form over
time and their size increases as ξ ∝ t1/z. In each correlated region the width of the surface
increases as the observation scale raised to the growing exponent α. Thus, for a finite sample
of side L and t → ∞ the width of the growing interface reaches a statistically stationary state
such as w(L) ∝ Lα . Furthermore, the overall width of the interface increases as tβ until it
reaches a maximum of the order Lα .

3. The Eden model and the unstable Eden model

The EM was introduced earlier by Eden [19] as a growth model for tumour cells. Since then
the EM has become a prototypical growth model. The EM is defined here in a square lattice of
width L and length M in (1+1) dimensions. The sites of the lattice are labelled by indices (i, j)

such as 1 � i � L and 1 � j � M . The growing process starts from a row of occupied sites
at j = 1 (∀i) while the remaining sites of the lattice are left vacant. The Eden clusters grow
simply by adding new particles to perimeter sites, i.e. those sites that are nearest neighbours
of already occupied sites. Specifically, the EM assumes that all perimeter (or growing) sites
have the same probability of becoming occupied.

Eden clusters are compact objects with a self-affine interface characterized, in (1 + 1)
dimensions, by exponents βEM = 1/3 and αEM = 1/2, and consequently zEM = αEM/βEM =
3/2 [1].

To investigate the properties of the interface generated by the collision between two
interfaces of different roughnesses the UEM is proposed. In the UEM the growing sites
have a probability P(j − 〈h〉) of becoming occupied, such as

P(j − 〈h〉) = C |j − 〈h〉|δ (4)

where δ is an exponent that can be tuned as an external parameter and 〈h〉 is the position
of the growing interfaces as given by equation (1). It should be noticed that, after each
deposition event, the growing probability of all perimeter sites has to be evaluated, such that
the normalization constant becomes C = 1

/ ∑
allsites P(j−〈h〉). Also, notice that for δ = 0 the

UEM gives the classical EM. The UEM is inspired in the experimental observation of the growth
of unstable interfaces upon both chemical vapour deposition of SiO2 [20] and electrodeposition
of Cu [21]. In fact, these experiments show that, due to the preferential deposition of atoms
in some regions of the sample, one observes the development of protrusions surrounded by
deep valleys and the growth of the interface becomes unstable during a transient period. This
kind of structure can be observed in the snapshot configuration of the UEM shown in figure 1.
However, in the experiments and for the long time regime, the surface reaches a scale-invariant
stationary state compatible with the Kardar–Parisi–Zhang universality class [20]. The UEM
explicitly takes into account this preferential deposition through the deposition probability
given by equation (4) and successfully describes the experimental findings [22].
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Figure 1. Typical snapshot configuration of the growing interface of the UEM within the width
saturation regime, obtained using a sample of width L = 256.

4. Numerical study of the UEM

The UEM is studied in the square lattice of width L, with 24 � L � 1536, by means of Monte
Carlo simulations. The Monte Carlo time step (MCS) is the time unit and corresponds to the
deposition of L particles. Results are averaged over 1500–5000 different runs, depending on
the size of the lattice. The probability P(j − 〈h〉) given by equation (4) has to be evaluated
after every deposition event, since such an event may cause both a displacement of the interface
location 〈h〉 and a change in the number of growing sites.

Figure 2(a) shows log–log plots of w(t, L) versus t obtained for the UEM with δ = 1
and using lattices of different sizes. The broken line has slope βUEM = 2/3 and has been
drawn for the sake of comparison. In fact, a least-squares fit of the short time behaviour of
w(t) (for 0.001 � t � 1) gives1 β∗

UEM = 0.70 ± 0.05. In contrast, the EM has a growth
exponent βEM = 1/3. It should be noticed that growth models with β > 1/2 are generally
called unstable because growth occurs when the initially selected orientation of the substrate
can no longer be maintained [5]. This kind of phenomena can clearly be observed in the
snapshot configuration shown in figure 1, where the lateral interfaces of the protrusion run
almost perpendicularly to the horizontal substrate. It should be stressed that this short time
(transient) instability becomes healed in the asymptotic regime, such as the interface width
becoming saturated, as shown in figure 2(a), reaching an L-dependent value (ws(L)). The
stabilization of the interface is due to the operation of the following feedback mechanism: the
growth starts from a flat surface and subsequently the unstable growth regime is triggered so
that the interface is characterized by a hill surrounded by valleys (see, e.g., figure 1). Recalling
that the growing probability depends on the distance to the average position of the interface
(equation (4)), one has that, after the transient period, such a probability is almost the same for
both the top of the hill and the bottom of the valleys. If, for example, a stochastic fluctuation
causes a hill to grow up higher than the average, then the average position of the interface

1 Hereafter we will use the superscript (∗) to identify the values of the exponents obtained by least-squares fits. Such
a symbol will be omitted to denote the conjectured values of the exponents.
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Figure 2. (a) Log–log plots of w(t, L) versus t obtained for the UEM with δ = 1 and using lattices
of different sizes L, as indicated in the figure. The broken line has slope βUEM = 2/3 and has been
drawn for comparison. (b) Scaling plot of w(t, L)/Lα∗

versus t/Lz∗
, according to equation (3).

will shift upwards, causing an enhancement of the growing probability of sites located at the
bottom of the valleys. The subsequent deposition on the valleys will cause the suppression of
the fluctuation and the stabilization of the interface. Of course, the same mechanisms operates
if the fluctuation starts in the valleys.
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Figure 3. Log–log plots of ws(L) versus L for both EM (δ = 0) and UEM with different values
of δ as indicated in the figure.

The stabilization of the interface, as already discussed, allows us to define the roughness
exponent α. In fact, figure 3 shows log–log plots of ws(L) versus L obtained for both EM
and UEM. For the case of the EM (δ = 0) the well known roughness exponent αEM = 1/2
is obtained (a least-squares fit gives α∗

EM = 0.49 ± 0.04). However, for the case of the UEM
and using different values of the parameter δ (see equation (4)), one obtains values of the
roughness exponent that are independent of δ, with αUEM

∼= 1 (α∗
UEM = 0.96 ± 0.04). Also,

using z = α/β, one has z∗
UEM = 1.37 ± 0.15 for the dynamic exponent.

Figure 2(b) shows log–log plots of the scaled width versus the scaled time, as suggested
by equation (3). The excellent data collapse that is observed strongly suggests that the UEM
satisfies the Family–Vicsek scaling ansatz [4, 18] with the obtained exponents z∗

UEM = 1.37
and α∗

UEM = 0.96. It should be noticed that at least two different mechanisms can lead to such
dynamic scaling for the overall interface width. One is a self-similar growth, while the second
is a coarsening process in which a single feature (e.g. a protrusion) becomes dominant. In the
first case, there is self-similarity as reflected in spatial homogeneity. However, in the second
case there is no spatial homogeneity and the profile varies from place to place. The latter
behaviour holds for the UEM, as follows from the observation of the snapshot of figure 1, and
consequently the UEM interface is no longer self-affine.

Models with α > 1 exhibit super-roughening since the density of sites of the interface
diverges in the thermodynamic limit [23, 24]. So, the proposed UEM with αUEM

∼= 1 may be
marginally super-rough.

In view of these results, it is also concluded that, for δ > 0, the exponents of the UEM are
independent of δ, at least within the range of the parameter that has been studied. Furthermore,
in contrast to the classical EM, the UEM interface lacks self-affinity.
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Figure 5. Log–log plot of wmax versus L for the colliding
interface. The straight line has slope α∗

coll = 0.96 and
corresponds to the least-squares fit of the data.

5. Properties of the interface generated by the collision between the EM and the UEM

Let us recall that it is considered that a collision event takes place when the last occupied
growing site of one cluster has at least one occupied neighbour belonging to the other cluster.
In this way, the collision interface is defined as the set of that kind of growing sites [16]. In
order to follow the collision process we first allow both the EM and UEM colliding interfaces
to reach saturation, i.e. for t � Lz. Subsequently, when the first collision event is detected the
time scale is initialized to t = 0 and the time evolution of the collision interface is measured.
The collision stops when all growing sites of both clusters become exhausted.

Figure 4(a) shows the width of the colliding interface (wint) as a function of time, obtained
for lattices of different sizes. Two different time regimes can be observed, as will be discussed
in detail below.

From the data shown in figure 4(a) one can evaluate the average maximum width of the
interface due to the collision (wmax) and a log–log plot of wmax versus L, as is shown in figure 5,
which gives a straight line with slope α∗

coll
∼= 0.96 ± 0.05 that is consistent with αcoll = 1.

Therefore, the interface resulting from the collision of two interfaces of different roughnesses
can be characterized by the roughness exponent of the rougher interface. It should be noted that
previous simulations have shown that when the colliding interfaces have the same roughness
the resulting interface also adopts the roughness exponent of such interfaces [16].

Also, using the data of figure 4(a) it is possible to evaluate the maximum (averaged) time
(tmax) elapsed during the collision process (see, e.g., the arrows in figure 4(a)). A log–log
plot of tmax versus L (not shown here for the sake of space) indicates that the relationship
tmax ∝ Lzcoll holds with a dynamic exponent for the collision given by z∗

coll = 0.95 ± 0.05 that
is consistent with zcoll = 1.

After obtaining the exponents αcoll and zcoll it is possible to drawn a re-scaled plot of wint

versus t as is shown in figure 4(b). The satisfactory data collapse obtained allows a clear
distinction to be made between the two different time regimes, as was earlier anticipated by
figure 4(a). In fact, there is a short time behaviour with β∗

st = 0.51 ± 0.01 and a long time
behaviour with β∗

lt = 1.36 ± 0.05. The crossover time is close to tcross/L ≈ 0.1. Since for
the short time regime the growing exponent is very close to that corresponding to a random
deposition process, βRD = 1/2, our finding may be understood if the collision interface starts
to grow with sporadic (randomly distributed) collision contacts between the Eden interface
and the topmost sites of the UEM interface. Subsequently, for t/L � tcross, the growth
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process becomes dominated by collisions between the standard Eden interface and the deep
valleys characteristic of the UEM. Consequently, the resulting interface is highly unstable with
βlt � βRD . Notice that the observed data collapse indicates that, not only tmax ∝ Lzcoll but
also the crossover time, scales with the same behaviour, namely tcross ∝ Lzcoll .

6. Conclusions

A new EM, such as the growing probability of a perimeter site is proportional to the distance to
the actual position of the interface, is presented and studied. The model exhibits a short time
instability: however, in the long time regime the interface becomes stable. Such an interface
is no longer self-affine. The fact that αUEM = 1 > αEM = 1/2 provides the possibility of
studying the properties of the interface resulting from the collision of interfaces of different
roughnesses. Our numerical results give strong evidence that the colliding interface adopts the
roughness exponent of the rougher interface. We expect that this numerical prediction may
be tested both experimentally and theoretically since the properties of interfaces are of great
interest in many physical, chemical and biological systems.
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